terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms: {1}
cons: {1}
recip: {1}
sqr: {1}
s: empty set
0: empty set
add: {1, 2}
dbl: {1}
first: {1, 2}
nil: empty set
↳ CSR
↳ CSRInnermostProof
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms: {1}
cons: {1}
recip: {1}
sqr: {1}
s: empty set
0: empty set
add: {1, 2}
dbl: {1}
first: {1, 2}
nil: empty set
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms: {1}
cons: {1}
recip: {1}
sqr: {1}
s: empty set
0: empty set
add: {1, 2}
dbl: {1}
first: {1, 2}
nil: empty set
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
TERMS(N) → SQR(N)
terms(s(N))
add(sqr(X), dbl(X))
sqr(X)
dbl(X)
add(X, Y)
first(X, Z)
sqr on positions {1}
dbl on positions {1}
add on positions {1, 2}
first on positions {1, 2}
U(sqr(x_0)) → U(x_0)
U(dbl(x_0)) → U(x_0)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
U(terms(s(N))) → TERMS(s(N))
U(add(sqr(X), dbl(X))) → ADD(sqr(X), dbl(X))
U(sqr(X)) → SQR(X)
U(dbl(X)) → DBL(X)
U(add(X, Y)) → ADD(X, Y)
U(first(X, Z)) → FIRST(X, Z)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
U(sqr(x_0)) → U(x_0)
U(dbl(x_0)) → U(x_0)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(sqr(x_0)) → U(x_0)
U(dbl(x_0)) → U(x_0)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
terms(N) → cons(recip(sqr(N)), terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
terms(x0)
sqr(0)
sqr(s(x0))
dbl(0)
dbl(s(x0))
add(0, x0)
add(s(x0), x1)
first(0, x0)
first(s(x0), cons(x1, x2))